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Mass flow sensing with heat waves: 
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DAVID K. LAMBERT 

Physics Department. General Motors Research and Environmental Staff. Warren, MI 4809C9055, U.S.A. 

(Received 28 Muy 1992 and injnalform 16 Ocrober 1992) 

Abstract-Two conceptual examples are given of mass Row sensors based on heat waves that have CX(ICI 
gas pressure self-compensation in uniform flow: one with a plane heat source through which the flow 
passes, and one with a line source. Both sensors ratio the heat wave amplitudes detected at equal distances 
upstream and downstream from the source. Heat wave fronts from either source expand symmetrically 
upstream and downstream. An automotive air flow sensor based on heat waves is also described and 
modeled. It is a microelectronic device on silicon. This sensor is approximately, but not exactly, self- 

compensated for pressure change. 

7. INTRODUCTION 

THE ABILITY to measure the mass flow of a gas, inde- 
pendent of pressure, is essential in some applications. 
One way to measure mass flow, with self-com- 
pensation for gas pressure, is by convective heat trans- 
fer from a solid to the flowing gas. This paper shows 
that heat waves can also be used to measure the mass 
flow of a gas, with self-compensation for pressure 
change. 

An example of a mass flow sensor based on heat 
waves is shown schematically in Fig. 1 (a). It compares 
the decay rate of heat waves moving upstream with 
that of heat waves moving downstream. The ampli- 
tude of temperature oscillation is measured at two 
points-equal distances upstream and downstream 
from a line source of oscillating heat. The ratio of the 
two amplitudes is dependent on the flow rate. The 
sensor’s output also identifies the flow direction. 

Heat waves decay exponentially with distance in the 
upstream direction. As a result, for a sensor like that in 
Fig. 1 (a) to detect enough upstream signal to operate 
properly, the propagation length must be comparable 
to the thermal decay length-the sensor must be com- 
pact in the streamwise direction. 

The present work grew out of effort to develop an 
air flow sensor based on heat wave propagation [I] 
to sense mass air flow into the automobile engine. 
Experiments indicate that the sensor is approximately 
self-compensated for pressure change. To understand 
why, a computational model for the automotive air 
flow sensor was developed. The model is presented 
here and used to investigate the effect of pressure 
change on the sensor’s response at constant mass air 
flow. 

The automotive sensor is different from the ideal 
sensor in Fig. 1 (a) in that the source and detectors of 
heat waves are all on a solid surface, not in the free 
stream. A solid substrate is necessary in the auto- 

motive application. A sensor with a substrate is very 
robust. The automotive sensor is a microelectronic 
device on a silicon substrate. The sensor actually 
responds only to flow very near the surface-in the 
boundary layer. Air flow into the engine is turbulent, 
but flow in the boundary layer over the sensor is 
laminar. The effect of main stream turbulence on the 
sensor’s output is primarily to cause noise-the limit- 
ing flow velocity at the outer edge of the boundary 
layer varies as a function of time. In the present analy- 
sis the velocity in the boundary layer is assumed to be 
steady. 

Microelectronic flow sensors based on steady-state 
heat transfer have also been developed [2-131. They 
compare temperature between two locations. With a 
constant heat input, the average temperature differ- 
ence is a function of mass air flow. 

An air flow sensor that closely approximates the 
sensor, in Fig. 1 (a) was developed earlier by Kielbasa 
and co-workers [14-l 61. Kielbasa’s sensor uses closely 
spaced hot wires as source and detectors of heat 
waves. Although an analytical model of Kielbasa’s 
sensor has been published [15, 161, it has not been 
recognized as a mass air flow sensor. The published 
model does imply, however, that Kielbasa’s sensor is 
self-compensated for pressure change. 

It is well known that flow velocity can be measured 
with heat waves [14-241 or pulses [25-341. In uniform 
steady flow, the centroid of a pulse of heat (or other 
diffusing species) drifts downstream at the mean flow 
velocity. Even in situations with shear, as in laminar 
flow through a tube, if a diffusive tracer (like heat) is 
introduced as a pulse and the tracer does not interact 
with the walls, the centroid of the pulse eventually 
moves downstream at the mean flow velocity [33-391. 
It is thus surprising that heat waves can also be used 
to measure mass flow. 

The present flow measurement technique involves 
thermal diffusion in the upstream direction. Although 
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NOMENCLATURE 

a width of heat source, Fig. 2(b) 
A cross-sectional area of duct 
b complex valued quantity of dimension 

l/L, equation (9) 

CF heat capacity at constant pressure 
c prefactor for heat wave amplitude 
d thickness of polyimide layer, Fig. 2(b) 
f’(q) normalized velocity in the boundary 

layer 
G(r’, r) Green’s function, equation (D3) 
H(r) spatially distributed heat source 
H,(r) effect of flow as a distributed heat source, 

equation (D2) 
i unit pure imaginary number 
1, 
KC? 
LO 
n7 

MAI 

P 
Pe 
P 

I 

r 

R 
S 

t 
T(r, 

T(r, 

T, 

TL 

mass flow through a duct 
associated Bessel function of zero order 
length used to define Pe in equation (I) 
complex valued quantity of dimension 
l/L 

M,, MC, MD intermediate quantities 
used in equation (C4) 
pressure 
Peclet number, equation (1) 
dimensionless effect ofp on measured I,,,, 
equation (23) 
distance from source 
position vector 
sensor’s response 
quantity of dimension l/L used in 
Fourier transforms 
time 

1) time-dependent temperature 
distribution 

w) complex amplitude of oscillatory 
temperature distribution 
exact temperature distribution with no 
flow, source width a 
exact temperature distribution with slug 
flow, line heat source 

T,(r) steady part of temperature distribution 
T, (r, w) E term in perturbation series for 

temperature distribution 
T,,(r, w) s2 term in perturbation series for 

temperature distribution 
TC temperature distribution perturbed by 

flow, equation (18) 
u(y) flow velocity distribution 
u flow velocity averaged over duct cross- 

section 

urn, 

UP 
W 

WO 
x 
2 

Y 

phase velocity in motionless fluid, 
equation (12) 
flow velocity outside of the boundary 
layer 
phase velocity, equation (1 I) 
amplitude of oscillatory part of 
dissipated power 
steady part of dissipated power 
coordinate in the direction of flow 
unit vector in the flow direction 
coordinate normal to the source and the 
flow. 

Greek symbols 

; 
thermal diffusivity, equation (2) 
flow velocity in slug flow model, equation 
cw 

s delta function of distribution theory 
A finite-difference-as in equations (21) 

and (23) 
E scale factor used in perturbation theory 
rl dimensionless distance y  

i 
thermal conductivity 
wavelength of heat wave in still fluid, 
equation (4) 

A effect of flow at y  on T(x, 0, w), equation 
(D7) 

; 
kinematic viscosity 
complex valued quantity of dimension 
l/L, equation (Al) 

P density 
7 time delay of phase relative to source, 

equation (16) 
4 phase 
X ratio of heat wave amplitudes, equation 

(2-v 
0 angular frequency, in rad s-‘. 

Superscripts and subscripts 
Fourier transformed quantity with 
respect to x 

+ defined on positive coordinate values 
- defined on negative coordinate values 
1 quantity for air 
2 quantity for polyimide 
3 quantity for silicon. 

the centroid of a heat pulse never moves upstream, pulses in a flowing fluid. Neuringer [40] obtained the 
a localized pulse of heat does cause a subsequent transient solution for a pulsed line source in shear 
temperature rise upstream, from diffusion. flow. In connection with Kielbasa’s device, a solution 

There have been previous theoretical studies con- was obtained [15, 161 for the heat waves from a line 
cemed with streamwise diffusion of heat waves ot source in uniform steady flow. With slug flow (uni- 
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FIG. I. (a) Schematic diagram of a sensor that uses heat 
waves from a line source to measure the direction and mass 
flow of a gas. Temperature detectors are equally spaced 
upstream and downstream from the source. The amplitude 
of the ac component of each signal is determined. The ratio 
of the two amplitudes is the sensor’s output. (b) Phase vel- 
ocity up of heat waves from a plane source, in fluid moving 
uniformly at velocity u normal to the source. The phase 
velocity u0 in still fluid is used for normalization. In air, at 

160 Hz, u0 = 21.2 cm s-l. 

form velocity even at the interface) over a flat plate 
with an edge, solutions have also been obtained [41, 
421 for the temperature transient caused by a jump in 
dissipated power. 

The present paper is organized as follows. Section 
2 discusses why steady state heat transfer from a solid 
to a gas-with pressure and velocity as variables-is 
a function only of the mass flow of the gas, and why 
flow sensing by heat waves is fundamentally different. 
Sections 3 and 4 show that two idealized sensors based 
on heat waves measure the mass flow of a gas. The 
first uses a plane source; the second, a line source (like 
Kielbasa’s device). Section 5 develops a model for the 
automotive air flow sensor. Part of the mode1 is a 
perturbation solution that is exact in the limit of low 
flow. A solution is also obtained for the artificial situ- 

ation of slug flow; it is mathematically exact at all 
flow velocities. The slug flow solution is used to check 
the perturbation solution. Section 6 combines the slug 
flow solution with the perturbation solution and with 
a realistic boundary layer, in a computational model 
of the automotive sensor’s flow response. The com- 
putational model is used to investigate the effect of 
pressure change on the automotive sensor’s flow 
response. Finally, the results are summarized. 

2. BACKGROUND 

Steady-state convective heat transfer to a gas is self- 
compensated for pressure change because of dynamic 
similarity, together with the pressure independence of 
the thermal conductivity ti and viscosity of an ideal 
gas at constant ambient temperature [43]. Self-com- 
pensation for pressure change breaks down if the flow 
velocity is low enough for natural convection to be 
important, if the flow velocity is large enough to be 
comparable to the speed of sound, or if temperature 
differences are large. 

Various flow sensors based on steady-state con- 
vective heat exchange have been developed [44, 451. 
For example, some hot wire sensors use feedback to 
maintain a constant temperature difference relative to 
the ambient. Sensor output is proportional to con- 
vective heat loss. Other hot wire sensors operate with 
a constant current and detect flow as a change in 
resistance. With constant ambient temperature, the 
output of either type of sensor is determined by the 
Peclet number 

&LO Pe = __ 
CI . 

Here u, is the flow velocity outside the boundary 
layer, CI is the thermal diffusivity, and Lo is a charac- 
teristic dimension. By definition 

cL=L 
PCIJ 

where p is the density and c,, is the heat capacity at 
constant pressure p. Hence, Pe is a function of pu,. 
In a duct with cross-sectional area A the mass flow 

I,,, = Apii. (3) 

Here U is the velocity averaged over the duct cross 
section. Both pti and pu, are functions of the Reyn- 
olds number, independent of p. Consequently, Pe is 
a function of I,,, alone, independent of any other 
change, as long as the change does not affect CJK or 
the thermal properties of the solid. Changing p does 
not affect any of these quantities, so a hot wire sensor 
responds to I,,, independent of p. 

Some flow sensors based on steady-state convective 
heat exchange are too large to be described by a U, 
at a single point. The sensor’s output, however, is still 
determined by the heat transfer at the surface. At each 
point on the surface the heat transfer is a function of 
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Table 1. Thermal conductivity K and thermal diffusivity a of air. silicon, and the polyimide used in the 
automotive air Row sensor. For the meaning of the other parameters see Fig. Z(b). The present values of 
Y, a, and 1’ are for 298 K and p = 100 kPa. For air, K, is to good approximation independent ofp, but a, 

and Y vary as p- ’ 

Value 

2.60 x lo-” 
2.13 x IO-’ 

1.49 
2.24 x IO-’ 
1.57 x 10-l 

0.89 
1.60 x IO-’ 

59 
14.5 
71 
4.1 

160 

Units 

W(cm K)-’ 
W(cm K)-’ 
W(cm K)-’ 

cm2 s-’ 
cm’ 5-l 
cm’ s-’ 
cm’s-’ 

Crm 
Pm 
pm 
mm 
Hz 

Description 

Air thermal conductivity [47] 
Polyimide thermal conductivity [51] 
Silicon thermal conductivity [49] 
Air thermal diffusivity [47, 481 
Polyimide thermal difIusivity [S I] 
Silicon thermal diffusivity [SO] 
Air kinematic viscosity [48, 55J 
Width of heat source 
Polyimide thickness 
Distance from center of heat source to detector 
Distance from leading edge to heat source 
Frequency of temperature oscillation 

pzi. Consequently, the output of the sensor is self- 
compensated to respond to I,,, independent of p. Fun- 
damentally, sensors based on steady-state heat ex- 
change are self-compensated for p because the local 
Pe is a function only of local mass flow. 

Heat waves involve a decay length in addition to 
Pe. In a still fluid, heat waves decay with distance x 
away from a source as exp (-x/n) where 

a. = J(2a/w). (4) 

Here o is the angular frequency of the source. The c( 
of air at 298 K and 100 kPa is given in Table I. For 
a source in air, oscillating at 100 Hz, i = 267 pm. It 
is evident from equations (2) and (4) that i, changes 
with p. As a consequence, the oscillating temperature 
does depend on p. Surprisingly, it is still possible for 
the output of a flow sensor based on an oscillating 
source to depend only on I,, independent of p. 

In the present paper, the time-dependent tem- 
perature increase (heat wave) produced by an oscif- 
fating heat source is T(r, 1). The source is assumed to 
vary as W,+ W cos (wt). The Fourier transform of 
T(r, I) is time independent but complex valued 

T(r, t) = T,(r) + Re[T(r, o) exp (iot)]. (5) 

Heat waves are completely described by T(r, w). The 
phase at r relative to the source is arg [T(r, w)]. 

One way to check T(r, w) is to consider the limit as 
w -+ 0. It should approach the steady temperature rise 
produced by the corresponding steady heat source. 

3. PLANE HEAT WAVE SOURCE 

This section considers a simple situation that con- 
tains the essential aspects of flow measurement with 
heat waves. The source of oscillating heat is a plane 
through which a gas flows with velocity u in the nor- 
mal direction. Heat waves move upstream and down- 
stream away from the plane. 

By symmetry T(r, m) depends only on the normal 
coordinate X. It obeys the equation 

The boundary conditions are that T(s, t) is con- 
tinuous and that the net heat flux away from the 
interface (per unit area) is equal to the dissipated 
power: W. + Wcos (WI). There are corresponding 
boundary conditions for T(s, w). Let T, and T- be 
T(.x, w) for x > 0 and x < 0, respectively. Then at 

x=0: T, = T_, 
aT+ aT- 

-tip+K---= w. 
ax ax (7) 

The solution to equations (6) and (7) is derived in 
Appendix A. For u > 0 the solution is 

T(x,w) = zexp (z -]r]b) (8) 

where L, is the length used to define Pe and 

One way to check this solution is to examine the 
limit as w + 0. Physically, this corresponds to the 
steady-state temperature in fluid that flows through a 
very thin heat exchanger. As expected, the tempera- 
ture rise caused by the source decays exponentially 
with distance in the upstream direction, and is con- 
stant downstream : To = W,J(upc,,). 

At finite w, T(x, w) is an exponentially damped wave 
that decays as it moves away from the source both 
in the upstream and downstream directions. There is 
symmetry between T(x, w) and T( -x, w) so that 

T(x, w) ~ = exp (Pex/&). 
T(--x, 4 

With x fixed, the ratio is a function only of Pe. Since Pe 
is a function only of mass air flow, independent of p, a 
sensor that measures the ratio is a mass air flow sensor 
and is exactly compensated for change in p. 

A sensor that compares the arrival time of heat waves 
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upstream and downstream from a plane source cannot 
use the same symmetry. Since the ratio in equation (10) 
is real, the phase 4 of T(x, w) is the same at ?I and -.x. 
The phase velocity up is the speed at which a phase front 
moves away from the source. Since 4 is the same at x 
and at --x, the wave moves at the same phase velocity 
in both the upstream and downstream directions. The 
phase velocity of a thermal wave in a moving fluid is not 
simply the vector sum of u and the phase velocity in still 
fluid. Explicitly, for x > 0, 

= o/Im b. (11) 

In this one-dimensional situation, up is independent of 
distance from the source. A plot of u,/uO vs u/z+, is given 
in Fig. 1 (b), where 

uo = I/@@ (12) 

is up in the motionless fluid. Note that up asymptotically 
approaches u in the downstream direction and -u in 
the upstream direction. Clearly, the up of heat waves 
from a plane source in air is not compensated for change 
in p. 

4. LINE HEAT WAVE SOURCE 

A thin wire is a good approximation to a line heat 
source. This section shows that with a line source, as in 
Fig. 1 (a), the ratio of temperature oscillation amplitude 
measured at two points, equal distances upstream and 
downstream from the source, is pressure self-com- 
pensated as a function of the mass flow of a gas. 

Let the fluid velocity normal to the line be ulz, and 
let the source’s oscillatory power dissipation (per unit 
length) be Wcos (cot). By symmetry, T(r, o) depends 
only on the coordinates x and y  where y  is in the 
direction normal to both P and the source. The (x, y) 
origin is chosen to be the line source. Away from the 
source, T(r, w) obeys the equation 

The solution is derived in Appendix B. It can be 
written 

W 
T(x,Y,~ = jgw 2Lo 

( > 
Pex K,(rb) (14) 

where K. is a zero order associated Bessel function, 
r = ,/(x’+y’), and b and Lo are as in equation (8). 

The symmetry of equation (10) for heat waves from 
a plane source is also found with a line source. In 
equation (14) it is apparent that 

m, YY WI 
n-&Y, WI 

= exp (Pe x/L,). (15) 

The phase of T(r, w) depends only on r. Not only is 
up the same in the upstream and downstream direc- 

tions (at a given r) but also in any other direction 
from the source. 

Consider a gas flow sensor like that in Fig. I(a) that 
detects the heat wave amplitude at equal distances 
upstream and downstream from a line source, and 
outputs the ratio of the two signals. Since the ratio 
depends on flow and pressure only through Pe, the 
sensor responds only to mass flow and is exactly com- 
pensated for change in p. 

In the limit of very low flow, with constant input 
power, natural convection is important and the pre- 
sent theory does not apply. Natural convection effects 
can be identified experimentally by their non-linear 
dependence on input power. For horizontal wires the 
onset of natural convection with decreasing flow has 
been studied experimentally [46]. 

An actual air ‘flow sensor like that in Fig. l(a), 
based on freely suspended hot wires, was reported by 
Kielbasa and co-workers [15], although they did not 
investigate the effect of p change. Unfortunately, the 
maximum flow that could be measured was small. The 
maximum was set by loss of signal amplitude in the 
upstream direction with increasing flow, an effect that 
increases with distance between source and detector. 
With wires separated by 100 pm the sensor operated 
in air flows up to about 2 m ss’. 

There are two ways to extend the flow range of 
Kielbasa’s sensor : bring the source and detector closer 
together or put the sensor in a region where u << U. A 
sensor on the wall uses both strategies. At the wall the 
flow velocity is zero. A sensor on the wall responds to 
flow near the surface (in the boundary layer). 

5. AUTOMOTIVE AIR FLOW SENSOR MODEL 

The air flow sensor that motivated the present study 
is shown in Fig. 2. It is used to measure air flow into 
an engine to control the air-to.-fuel ratio. The substrate 
is a silicon wafer coated with polyimide. As discussed 
in ref. [ I] the optimum polyimide thickness is about 
15 pm. Polyimide is a good thermal insulator. Silicon 
is a good thermal conductor. The polyimide layer 
isolates the heat waves from the silicon so a significant 
fraction of the detected signal comes through the air. 
In the automotive application the sensor is mounted 
in an 8 cm diameter duct and measures flow velocities 
up to about 60 m s-‘. 

The automotive sensor is more complicated than 
the situations discussed in Sections 3 and 4. Here there 
is a boundary layer and the heat flows in both the 
substrate and the air; it is no longer true that thermal 
wave fronts arrive simultaneously at the upstream and 
downstream points. In fact, comparison of arrival 
time is one way to measure flow: see Fig. 2(a). 
Another way is to compare amplitude at the upstream 
and downstream points as in Sections 3 and 4. The 
time difference method and the amplitude method are 
closely related. Both are considered in this section. 

The notation used to describe the device is shown 
in Fig. 2(b). A thin film resistor of width a is used as 
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FIG. 2. (a) Schematic diagram of an automotive air flow 
sensor that compares the propagation time of heat waves 
moving upstream and downstream along a surface. The heat 
source is ac through a thin film resistor. Temperature detec- 
tors are equally spaced upstream and downstream from the 
source. The time delay of one signal vs the other is the output. 
The sensor’s output indicates both the magnitude and direc- 
tion of the flow. (b) Side view showing the notation used in 

the model. The drawing is not to scale. 

the heat source. The polyimide thickness is d. The 
distance from the leading edge to the heat source is 
x,,. The drawing is not to scale: typically the heat 
source is 0.5 pm thick, the polyimide IS pm thick, the 
silicon wafer 0.5 mm thick, and x0 is several mm. The 
thermal conductivity K and thermal diffusivity CI are 
labeled by subscripts I, 2, and 3, in air, polyimide, 
and silicon, respectively. 

The present model is two-dimensional and assumes 
that temperature is continuous across interfaces [I]. 
Only at a source is there non-zero total heat flux from 
an interface. The thickness of the silicon substrate is 
taken to be infinite. This simplifies the description and 
introduces no significant loss of accuracy. Typical 
values of the parameters are listed in Table I, includ- 
ing the measured IX and K of air [47, 481, silicon [49, 
SO], and the polyimide [5l] used in the sensor. 

To solve for the sensor’s flow response, three 
approaches are used. In logical order they are: first, 
in the limit of low flow (small Pe), an exact solution 
for T(r, o) is obtained with perturbation theory. Heat 
losses to the substrate and heat exchange with the 

air are fully accounted for. It assumes that the flow 
velocity is parallel to the surface and small, but no 
other assumptions are made-it uses the actual vel- 
ocity profile in the boundary layer. Second, to validate 
the perturbation solution and investigate its break- 
down as velocity increases, an exacf solution is 
obtained with slug flow (velocity independent of dis- 
tance J’ from the surface) that is valid at any velocity. 
I f  there were complete slip, the slug flow solution 
would be exact. And third, with flow velocity too large 
for the direct use of perturbation theory, T(r, o) is 
approximated by a combination of the perturbation 
and slug flow solutions. 

Since the perturbation solution is based on the exact 
solution with zero flow velocity-a special case of the 
slug flow solution-slug flow is discussed first. 

In all three situations T(r, w) obeys equation (13) 
with the appropriate CL and flow velocity u(v) in air, 
polyimide, and the silicon substrate. The boundary 
conditions are that T(r, t) is continuous across both 
interfaces, 1 Tl --t 0 as r + co, and that heat flux is 
continuous everywhere except at the source. The heat 
source is at the air-polyimide interface. It is a strip of 
width u in which the oscillatory heat dissipation per 
unit length is Wcos (cur). The oscillatory temperature 
at the detector is derived in Appendix C. On the wall, 
at position .nZ relative to the center of the source, and 
with slug flow j?, T(r, w) = T(x, 0, w, p) is given by 
equation (C6). 

Flow affects both the amplitude and phase of 
detected heat waves. The phase lag at .Y relative to the 
oscillation of source power is -arg [T(s, 0, w, p)]. 
The corresponding time delay is 

T = - arg [ T(s, 0, 0, /3)1/o. (16) 

In Fig. 3 both 7(/l) and IT](p) are shown for the 
situation of Table I. The integral in equation (C6) 
was evaluated numerically with IMSL routines 
DQDAWO and DQAWF [52]. 

The perturbation solution for T(r, o) with a given 
u(v) is discussed next. The effect of convection on T(r, 
w) is the same as if a new heat source was added to 
the zero flow situation. With distributed heat source 
H(r) exp(iot) and steady flow u(y)9, the complex 
temperature field T(r, w) obeys 

ioT+u(Jl)P*VT = uv’T+aH/~. (17) 

Let T,(r, w) be the exact solution with no flow. Con- 
sider the family of velocity distributions au(y), where 
0 < E < I, that give rise to solutions TE(r, w). For 
small E 

T,(r,w) = T,(r,w)+sT,(r,W)+s2T,,(r,w)+ .... 

(18) 

The first term in this series, T,(r, w), is given by 
equation (C7). As shown in Appendix D, at y  = 0 the 
second term is 
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01:5 P [m/s1 
FIG. 3. Comparison between the exact solution and the 
perturbation solution, both with slug flow. The flow velocity 
is /I. See Table I for the situation. In (a) 7 is the delay time 
of signal oscillations relative to the source. In (b) 1 rl/W is 
the signal oscillation amplitude normalized by the oscillation 

amplitude of source power dissipated per: unit length. 

s 
r T,(x,O,o) = U(Y)NK Y) dy (19) 

0 

where A(r) is given by equation (D7). 
The complex valued A(s, y) gives the linear tem- 

perature response at s on the surface to air flow at 
height y  above the surface. A plot of ]A] vs y  for the 
situation ofTable 1 is shown in Fig. 4(a). Note that ]A] 
does not simply decrease exponentially with distance 
from the wall. There is a maximum at about 11 pm 
above the surface. 

The perturbation solution for T(r, w) is obtained 
by truncating the series in equation (18) after the T, 
term. The validity of the perturbation solution is 
tested in Fig. 3 by comparison with the exact solution 
for slug flow. The first-order approximation is asymp- 
totic with the exact solution at p = 0 but breaks down 
at large flow : ] TI deviates from the exact solution by 
10% at -10.5 m s-l. As expected, it breaks down at 
/I - u. = 0.2 m s-l. 

A better approximation is to use the perturbation 
solution to find the slug flow that, weighted by A, best 
approximates the actual u(y) 

Sensor response is calculated by using the slug flow 

p(u(y)) = Re 

model with this /I. 
The approximation involved in the use of /I from 

equation (20) comes from the replacement of the 
actual u(y) in the boundary layer, which is approxi- 
mately linear near the wall, by an equivalent slug 
flow that has no shear. Taylor dispersion [35-391 is 
neglected. A more accurate approach would be to use 

the analytic solution with u(y) oc y  as the basis for 
approximation, but that involves the use of special 
functions of complex argument that are difficult to 
evaluate [40, 531. 

6. FLOW AND PRESSURE RESPONSE 

In this Section, the model developed in Section 5 
is used to investigate the automotive sensor’s flow 
response and check how closely it approximates an 
ideal mass flow sensor. 

The situation is that of Table 1, as shown in Fig. 2. 
The heat source is on a flat plate, parallel to the leading 
edge, at distance x0 downstream. Laminar flow is 
incident parallel to the plate. 

The sensor responds to flow near the surface. As 
discussed in Section 2, I,,, through a duct that contains 
the sensor is a function of u, outside the boundary 
layer and of the air pressure p. Near the surface 
there is a boundary layer so u(y) a y  at small y. 
The Blasius solution is u(y) = u,y(n) where n = y  
,/(u,/(vxo)). Here f’ is the numerical solution to 
Blasius’ ordinary differential equation [54] and v  is 
air’s kinematic viscosity [48, 551. 

To obtain the sensor’s flow response, the first step 
is to use equation (20) to calculate j(u,), as plotted 
in Fig. 4(b). The situation is that of Table 1. The 
functional form of/l vs u, is explained as follows. The 
range of y  where A is significant is shown in Fig. 4(a). 
As long as u(y) is approximately linear withy in this 
range then /l a u’(0) where u’(0) = du/dy at the wall. 
For the Blasius boundary layer, u’(0) a ~2’. Conse- 
quently, for small u,, p a uzz. Actually, this relation 
is accurate to 8% over the entire range of u, in Fig. 
4(b). At large u, this relation must break down since 
P<um. 

The sensor in Fig. 2(a) compares the arrival time 
of wave fronts at detectors upstream and downstream 
from the heat source. It measures 

AT = r( -x) -r(x). (21) 

With slug flow, 7 at the upstream position -x and at 
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FIG. 4. (a) Plot showing how the sensor responds to a thin 
jet of air parallel to the surface, at distance JJ above it. Here 
A is the first-order effect of flow at y on detected signal and 
W is the source power dissipated per unit length. See Table 
I for the situation. (b) Plot of effective slug flow velocity /? 
vs u,, the flow velocity outside the boundary layer. The air 
flow is incident parallel to a thin flat plate (Blasius boundary 

layer). 

the downstream position x are related by 7(x, 0, w, 
/?) = T(-x, 0, o, -/?). To obtain AT(u,), the exact 
7(x, p) for slug flow from Fig. 3(a) is evaluated at 
+-(u,) from Fig. 4(b). The result is plotted in Fig. 
5(a). I f  the sensor is symmetric, x0 is the same if the 
flow reverses and A7(-u,) = -A7(u,). The sensor 
indicates both the direction and magnitude of the 
flow. 

A device like that in Fig. 2(a) couid respond to heat 
wave amplitudes at the two detectors instead of arrival 
time differences. A sensor like those of Sections 3 and 
4 would output the ratio 

x = I~(x,0,0)/~(-x,0,0)I. (22) 

A plot of ~(u,,,) obtained by evaluating Irj(j) from 
Fig. 3(b) at k/3(um) is shown in Fig. 5(b). Note that 
AT saturates at large flow while x does not, 

In experiments, data of A7 vs u, is consistent with 
the model. but data of Y vs u, deviates from the model 

I ”  Y 
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FIG. 5. Response of the automotive air flow sensor. In (a) 
A7 is the time delay between the upstream and downstream 
detectors. In (b) x is the ratio of the amplitudes measured 
by the upstream and downstream detectors. In (c) Q is the 
fractional effect of pressure change (at constant mass flow) 
on the flow response in (a) and (b). The mass flow (which 
depends on duct size) is indicated by the flow velocity u, at 

p = 100 kPa. Since Q < 0, -Q is plotted. 
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at large flow-actually x does saturate like AT. It is 
likely that the neglect of Taylor dispersion is respon- 
sible for the error in predicted x. By analogy to the 
convectiondiffusion of heat pulses, Taylor dispersion 
would be expected to have little effect on A7 since it 
has no effect on the average speed at which a pulse 
moves downstream. Taylor dispersion does, however, 
cause a pulse to broaden, and this affects x. 

In the automotive application it is important that 
the sensor’s response to mass air flow I,,, be insensitive 
to air pressure p. Let R(I,,,, p) be the sensor’s output 
at fixed I,,, and p. At fixed p, the I,,, indicated by the 
sensor is the inverse function R-‘(R, p). which is 
independent of p if the sensor responds only to mass 
flow. A mass flow sensor does not measure p, so if 
R- ’ depends on p, and p changes, the measured I,,, 
will be different from the actual I,,,. Let AI,,, be the 
change in measured I,,, (with I,,, held constant) caused 
by a change Ap in p. I f  Ap is small, then Al, a Ap. 
The effect of p on the sensor’s response is described 
by the dimensionless ratio 

Qcl 
m 

) = WmlLJ 
@P/P) 

p aR-’ 
=-- 

1, i-9 ,” 

An ideal mass air flow sensor (R = u,p is an example) 
has Q = 0. A velocity sensor with R = U has Q(l,,,) 
=- I. 

As shown in Fig. 5(c), Q vs Z, has been calculated 
for both the A7 and x versions of the automotive flow 
sensor. The model is the same as for Figs. 5(a) and 
(b). Change of p at constant f,  affects IX,, v, and u,. 
In Fig. 5(c) the Q oscillations at small 1, are artifacts 
of the finite difference calculation. A more careful 
analysis shows that Q approaches a constant as I,,, + 
0. At small I,,, the A7 and x curves in Fig. S(c) should 
approach Q = 0.23 and 0.12, respectively. 

7. SUMMARY 

Two examples have been given of sensors that use 
heat waves to measure the mass flow of a gas with 
exact self-compensation for pressure change : one with 
a plane heat source, and one with a line heat source. 
These sensors are limited in size in the flow direction 
by the need to measure heat waves that move 
upstream. In them, phase fronts of the heat wave 
arrive simultaneously at points equal distance 
upstream and downstream from the source. 

Mass flow sensors based on heat waves are con- 
ceptually different from mass flow sensors based on 
average heat transfer. Mass flow sensors based on 
heat waves must use upstream and downstream 
propagation distances that are equal and of limited 

size. Mass flow sensors based on average heat transfer 
do not have to be small. 

In the more realistic situation of an automotive 
air flow sensor, with source and detectors on a solid 
substrate, and a boundary layer, pressure self-com- 
pensation is no longer exact. The phase arrival sym- 
metry is also broken, so the flow rate can be deter- 
mined either from the ratio of upstream/downstream 
amplitude or from the difference in phase arrival 
times. In Section 6, both are shown to more accurately 
measure mass flow in a situation of unknown pressure 
than would a velocity sensor (without pressure infor- 
mation). For example, in the limit of low flow where 
perturbation theory is accurate, in the 85-100 kPa 
pressure range, the heat wave sensor that used phase 
arrival time or amplitude ratio would, respectively, 
indicate mass air flow with f  I .7% or f  0.9% relative 
error. A sensor that measured flow velocity would 
have +7.5% relative error (independent of flow) in 
the same pressure range. 

The present computational model for the auto- 
motive air flow sensor combines perturbation theory 
with the exact solution for slug flow. The model indi- 
cates that the relative error in measured I,,, caused by 
pressure change is largest in the limit of low flow 
where perturbation theory is valid. The model also 
shows that the sensor only responds to flow close to 
the surface, well inside the boundary layer. The pre- 
sent approach is different from that used in ref. [l] to 
explain the effect of flow on the time-of-flight of heat 
waves. There it was assumed that the phase velocity 
up of a heat wave in moving fluid is simply up = u + u0 
where u0 is the phase velocity in still air and u is the 
fluid velocity. As shown in Fig. l(b), that approxi- 
mation is correct in the downstream direction if 
u >> u,,, but not in general. One way to improve the 
present computational model would be to base it on 
an exact heat wave solution with flow velocity u(y) 
a y  instead of slug flow. The use of slug flow neglects 

Taylor dispersion. 
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APPENDIX A: PLANE SOURCE 

where K, is a zero-order associated Bessel function, r = 
J(x’+y’), and b is defined in equation (9). 

A solution to equation (6) is APPENDIX C: SLUG FLOW 

7Xx, w) = Cexp (5x1, (AlI 

provided that at*-ut;-iw = 0. The two complex 5 roots 
correspond to plane heat waves moving upstream and down- 
stream. The waves are assumed to originate at .v = 0, so 
solutions that grow as Ix] + co are unphysical : in the region 
with x < 0 the solution must use the root with Re(t) 2 0, 
and in the region with x > 0 the solution must use the root 
with Re({) < 0. Explicitly, for u > 0 

With slug flow, the situation is shown in Fig. 2(b). There 
are three regions : the air is 1, the polyimide is 2, and the 
silicon substrate is 3. Let T,, T2, and T, be Tin regions 1, 
2, and 3, respectively. In each region, T obeys equation (I 3). 
With slug flow, u(y) = a in region I, and u = 0 in regions 2 
and 3. Since the partial differential equations for Tare linear, 
it is convenient to first solve the simpler problem of a line 
heat source at r = 0 on the interface between regions I and 
2. The solution with a line source and slug flow is TL(r, w), 
The desired T(r, UJ) with an extended source and slug flow is 
the convolution of the source with TL(r, o). 

To solve for Tc(r, o), a line source at the air-polyimide 
interface is included in the boundary conditions where b is the root with positive real part given by equation 

(9). 
The boundary conditions in equation (7) between T, with 

x > 0 and T- with x i 0 determine their prefactors. The 
final result for u 2 0 is 

643) 

APPENDIX B: LINE SOURCE 

To find T(r, w) that solves equation (13), with a line heat 
source at r = 0, it is convenient to divide the space into two 
regions by the plane with y = 0. Let T+ and T- be the 
solutions in the regions with y > 0 and y < 0, respectively. 
The boundary conditions are 

y=O: T, = T-, -KS +K% = We, 
a~ ay 

@I) 

Equation (13) is converted to an ordinary differential 
equation by a Fourier transform with respect to x. The 
Fourier transform and its inverse are 

?(s, y, o)e- ds, W) 

(B3) 

After Fourier transformation, equation (13) becomes 

a( --s’F+ $)= iwF+isuF. (B4) 

The boundary conditions become 

y=o: f,  =T-, aT+ aFT_ w 
-KF +KF = J(2x)’ (B5) 

The solution of equation (B4) is 

S,Y,~ = Cexp (-mlvl) (W 
where Re(m) z 0 to satisfy the requirement that ] f, ] + 0 as 

IYI + co. Explicitly, m is the root with positive real part: 
m = J(sz+i(w+us)/a). Let C, and C- be the prefactors in 

equation (B6) for T+ and T-, respectively. Equation (B5) 
implies that 

C, = C- = W/(2Km,/(2$). 

The solution for a line heat source is [56] 

(B7) 

T(x, y, o) = w 
s 

cc exp(-m]y]+isx) 

47CK ,=-- 
ds 

m 

y=O: T,=T,, -KIaTI+KIaTZ= WC?(X); 
aY aY 

y=-d: T,=T 3. -K?$+h.,%=O. (Cl) 

An additional requirement is that TL(rr o) --t 0 as y -( + co. 
A Fourier transform with respect to x converts equation 

(13) into equation (B4). The solution of equation (B4) that 
has the correct limits as y -+ + co in regions I and 3 is 

t,(s,y) = C, eemlJ 

T2(s, y) = C, em?? + C2b e-“‘J 

i;, (s, y) = C, en’s”, (C2) 
where m,, m,, and mj are the roots with positive real part: 
m, = J(s’+i(w+s/?)/a,), ml = J(s’+iu/a,), and m, = 
J(s*+iw/a,). 

The transformed boundary conditions are 

y=o: f,=P aT, aF2 w  
25 -K,dy+K2ay=-- 

_Jm 

y = -d: F2 = F,, -K~~+K,$=O. (c3) 

The boundary conditions give four equations to solve for the 
four complex numbers C,, C,, C,,, and Cj. The desired 
T,(r, o) is equation (C2) with 

WWA + MB) 
‘I = (2rr)“*(M,,M,+M,M,) 

WM, 

‘% = (2x) “‘(M,,Mc + M,M,) 

WMe 
‘*’ = (27~) “*(MAMc +M,M,) 

2 WK*rn* 

Cl = (~z)“~(M,,M, +MBMo) 
e(m,-ntl)d 

(C4) 

where MA = rc,m,+rc,m,, MB = (tcZm2-rc,m,) e-Imld, MC = 
Kim,-!-K2m2, and MD = K,m,-K2m2. 

With an extended source, T(r, m) is the convolution of 
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T,(r, w) with the source. The Fourier transform of the con- 
volution of two functions is the product of the two individual 
Fourier transforms. The result for a source evenly distributed 
in the 1x1 < a/2 region of the .r = 0 plane is 

Rs, y) = 
2 sin (su/2) _ 
___ TL(S,?‘) srf 

On the wall T(r, Q) is 

s u (M,, + MB) sin (42) e”’ 
ds. (C6) _ 

I .~(MAMc+MdD) 

In still air equation (C6) simplifies to 2W 
~,(.Y,o.UJ) = ; 

s 

‘ CM, + M,) sin (sa/2) cos (ss) ds 

0 M-f,Mc+M,M”) 

(C7) 

APPENDIX D : PERTURBATION SOLUTION 

In a region without heat sources, to first-order in E, equa- 
tions (I 7) and (I 8) give 

iwT,-aV’T, = -u(JJ)$. PI) 

In equation (D I ) r, plays the same role as Tin equation ( 17) 
with still air. In this interpretation the source of 7’, is 

w(y) ar, 
H,(r)= -a- 

ax 03 

The solution for T,(r, o) can be expressed in terms of T,(r, 
o) the still air solution derived in Appendix C. The effect of 
H,(r) on r, is linear so 

T,(r,w) = 
s 

H,(r’)G(r’. r) dA’ P3) 

where G(r’, r) is T(r. W) in still air from a fictitious line source 
of heat at r’, oscillating in phase with the actual source, with 
unit amplitude. 

The detected T, is at y = 0. By reciprocation [57], in still 
air C(r’. r) = G(r, r’), so 

G(s’,y’,s,O) = T,(s’-s,y’)/W. (D4) 

The perturbation solution in terms of TL (with ZI = 0) and 
T, is 

s [ 
- -ti, ~,kO,w) = yw u(y) 1 g,T,(x’,y’,w) 1 

x T,(s’-x,y’,w)dA’. (D5) 

The expressions derived in Appendix C for T., and rL are 
Fourier transforms, It is simpler to evaluate r, if it is 
expressed directly in terms of the Fourier transformed 
quantities ?” and i;, with still air 

s 

7 
r, (x, 0, w) = u(y)W. j3 dy 061 

0 

where 

x sin (SO/~) exp (is\-- 2m ,v) ds. (D7) 


